## 中国激光

第13卷 第10期

## 高速钢刀具激光硬化的研究

孙 堃 王 秀 胡秉文 王克勤 (吉林工业大学)

提要:提出激光硬化时的激光强度分布特性和主要参数。用多因素试验分析得 到了激光硬化的最佳参数。切削性能试验表明,激光硬化的刀具寿命可以大大提高。

## Investigation on laser hardening of high speed steel tools

Sun Kun, Wang Xiu, Hu Bingwen, Wang Keqin (Jilin University of Technology)

Abstract: In this paper characteristics of field pattern distribution by laser hardening and the important parameters are presented. Through analysis on multi-factor tests, the optimum parameters are determined. Test of cutting performance shows that its lifetime can be increased greatly.

一、引 言

采用较好的刀具材料,选用合适的刀具 几何参数及切削用量,是提高刀具寿命的一 般方法。近年来,激光硬化提高材料的硬度 及耐磨性等方面都已取得了较好的效果。无 论是较便宜材料(如碳素工具钢)的刀具还是 较贵重材料(如高速钢)的刀具,硬化后如果 寿命能大大提高,就将大大地降低刀具的成 本。可以预见,切削刀具经过激光硬化后的 经济效益将是十分显著的。

## 二、激光硬化对场图 分布特性的要求

我们知道,切削刀具的激光硬化是具有

很强的针对性,例如在刀具的后刀面或前刀 面的磨损区上进行硬化。由于刀具激光硬化 是微区受热处理过程,故可以采用固体脉冲 激光器,如敏玻璃激光器。

激光强度的分布特性是激光硬化工艺很 重要的因素。实际上大多数激光器输出的光 束是非均匀的。不均匀会给材料表面受热造 成很大的温度梯度。可以想象,在多模振荡 时情况还要严重。因此,激光硬化后的表面 性能也很难会均匀一致。

采用虚共心谐振腔或对激光脉冲进行 超声调制等都有改善激光强度分布均匀性 的效果,但更加简便的方法是采用"乱相 屏"<sup>[23]</sup>。

乱相屏实际上是一块玻璃板,其中一面

收稿日期: 1985年7月8日。

. 639 .

to St. Ca

| 距光束中   | 中心的距离(mm) | 0  | 0.5 | 1  | 1.5 | 2  | 2.5 | 3  | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 |
|--------|-----------|----|-----|----|-----|----|-----|----|-----|---|-----|---|-----|---|
| N/ 319 | 不加乱相屏     | 46 | 37  | 37 | 30  | 30 | 26  | 17 | 5   | 1 | 0   |   | -   |   |
| 尤强     | 加乱相屏      | 20 | 19  | 18 | 19  | 14 | 16  | 13 | 9   | 6 | 2   | 2 | 1   | 0 |

表1 光强分布比较

注: 光强为检流计格数

護東王

表2 输出能量、转换效率及发散角比较

| 工作由正 | 加           | 乱相          | 屏                   | 不           | 加乱相         | 屏                    |
|------|-------------|-------------|---------------------|-------------|-------------|----------------------|
| (k∇) | 输出能量<br>(J) | 转换效率<br>(%) | 发散角<br>(rad)        | 输出能量<br>(J) | 转换效率<br>(%) | 发散角<br>(rad)         |
| 1.2  | 3.0         | 0.36        | $58 \times 10^{-3}$ | 4.0         | 0.50        | 0.5×10 <sup>-3</sup> |
| 1.4  | 7.3         | 0.66        | $69 \times 10^{-3}$ | 9.5         | 1.80        | $1.3 \times 10^{-3}$ |
| 1.6  | 13.0        | 0.94        | 75×10-3             | 15.0        | 1.00        | 1.4×10-3             |
| 1.8  | 18.0        | 1.00        | 87×10-3             | 21.0        | 1.20        | $1.6 \times 10^{-3}$ |

注: 工作物质: 钕玻璃 φ8×180 mm 储能电容: 1120 μF

Abstract: In this paper characteristics of field pattern distribution by laser hardening a



用浓度为40%的氢氟酸水溶液进行20分钟的化学腐蚀或用其它机械方法把该面打毛, 把制好的乱相屏置于聚焦透镜之前即可(图 1)。

图 2(a)为直接接受到的光斑;图 2(b)为 通过乱相屏后接收到的光斑。可以看出,采 用乱相屏后改善了光强分布特性,使它更加 均匀。



1一不加乱相屏; 2一加乱相屏

用能量计检测了光束光强分布,将  $\phi 0.67 \text{ mm}$ 的光阑置于炭斗的中心,从光束 中心向外测量。每测量一个点向外移动 0.5 mm。表1及图3为试验结果。

加乱相屏后激光器输出能量、转换效率 及发散角与不加乱相屏时的比较见表 2。从 表 2 可以看出,加乱相屏之后输出能量要大 致减少 1~3 J,但发散角要增大几十倍到 100 倍。

| Ξ, | 激光硬化处理主要 |
|----|----------|
|    | 参数的确定    |

根据材料表面要达到的温度 $T_{0}$ ,即可用 下式确定所需要的激光功率密度 qo<sup>[1]</sup>

$$q_0 = \frac{kT_0}{2(1-R)} \sqrt{\frac{\pi}{a\tau}}$$
(1)

式中 k——材料的导热率; R——材料表面 的反射率; a——材料的导温系数; т——激 光脉冲宽度。

当激光束横截面上的辐射强度分布均匀 化时,可按下式对 qo进行修正:

$$q = \frac{E_0}{E} q_0 = K q_0 \tag{2}$$

式中 K---修正系数; Eo---不加乱相屏 时的输出能量; 正——加乱相屏时的输出能 量。试验表明 K=1.1~1.3。

这样,根据式(2)便可求出总的功率密度 q, 进而求出激光器的输出能量 E:  $E = q\pi r_0^2 \tau \tag{3}$ 

式中 ro----- 焦斑半径;  $r_0 = (f + \Delta f) r_{\min} / f;$ 

f---透镜的焦距; △f---离焦量(为扩大激 光硬化时焦斑处受热体积, 宜采用发散光 束,即焦点应置于材料表面之上某一点); rmin——焦平面上最小焦斑半径。

根据互就可以转化成储能电容的工作 电压V:

$$V = \sqrt{\frac{2E}{C\eta}} \tag{4}$$

式中 C---储能电容器容量; η---激光器 

现对 W18Cr4V 高速钢刀具材料进行激 光硬化时的主要参数进行估算如下:

取 k=80×10<sup>-3</sup> cal/cm·°C·s, 表面熔化 温度

 $T_0 = 1600^{\circ} \text{C}, R = 40\%,$  $a = 0.061 \,\mathrm{cm}^2/\mathrm{s}, \ \tau = 0.5 \times 10^{-3} \,\mathrm{s}.$  $K = 1.3, f = 5.1745 \,\mathrm{cm},$ 

 $\Delta f = 0.4 \,\mathrm{cm}, \ r_{\min} = 0.2 \,\mathrm{cm},$  $C = 1120 \,\mu \text{F}, \eta = 0.94\%$ 按上述有关公式计算可得:  $q_0 = 1.4 \times 10^5 \, \mathrm{W/cm^2}$ .  $q = 1.8 \times 10^5 \, \text{W/cm}^2$ ,  $r_0 = 0.215 \, \mathrm{cm}$ ,  $E = 14 \text{J}, V = 1.6 \text{kV}_{o}$ 

量

以上计算所得数据是熔化一冷凝硬化时 的情况,这时To应高于材料的熔点而低于沸 点; 如果按固体相变硬化, To 应低于材料的 熔化温度而取淬火温度上限。

实际上,影响激光硬化的因素是很多的。 这里主要考虑重要而又易于变化的那些影响 因素,如工作电压,光点的排布(可用两个光 点间的距离来表示)及光点大小(可用离焦量 来表示)。上述三个因素各取两个值(见表 3)。选择 L<sub>8</sub>(2<sup>7</sup>)正交表作 8 次试验 结果(硬 化后的硬度)表明,最好的条件是 $V_{2l_2}\Delta f_{2o}$ 作方差分析表明离焦量对硬化效果有较显著 影响。在最佳条件下的试验结果见表4。可 以看出: W18Cr4V(原始组织为回火马氏体, HR<sub>A</sub>=80)表面经激光硬化后硬度可由原来 的 HR<sub>A</sub>=80 提高到 HR<sub>A</sub> 87.4。边缘处的 硬度要比交叉处及中心处的硬度高,而中心 处的硬度又低于基体的硬度。 文献[3]也指 出了这种情况。在各点处的硬度差别,归根 结底还是激光强度分布的问题。这里尽管采

表3 因素水平

| 大平     | 工作电压 ₽<br>(Ⅴ) | 光点排布1<br>(mm)       | 离焦量 <i>Δf</i><br>(mm) |
|--------|---------------|---------------------|-----------------------|
| 1      | 1900          | 1.5                 | 5                     |
| 效。2月19 | 1700          | (上一) <b>0.1</b> .硬有 | 新年[ <b>4</b> ]        |

表4 硬化处各点硬度

| 硬度测试点  | 中 | 心 | 交 | 叉 | 边  | 缘  |
|--------|---|---|---|---|----|----|
| 硬度 HRA | 7 | 8 | 8 | 4 | 87 | .4 |

. 641

| 12000  | $y_{l} = 0.94\%$ | 切削             | 用 量             | 枪调极间        | (处理主系)         | 耐 用 度         | 是用花的  |
|--------|------------------|----------------|-----------------|-------------|----------------|---------------|-------|
| 试验号    | 切削速度<br>(m/min)  | 转 速<br>(转/min) | 进 给 量<br>(mm/转) | 切 深<br>(mm) | 未硬化<br>TQ(min) | 硬化<br>TH(min) | TH/TQ |
| +01 ×1 | 44.5             | 160            | 0.12            | 0.3         | 14.6           | 18.3          | 1.25  |
| 2      | 44.5             | 160            | 0.08            | 0.1         | 16.4           | 32.8          | 2.00  |
| 3      | 27.9             | 100            | 0.12            | 0.1         | 11.7           | 17.5          | 1.50  |
| 4      | 27.9             | 100            | 0.08            | 0.3         | 26.3           | 70.4          | 2.67  |

表5 切削性能试验

用了乱相屏使光强分布特性有所改善,但毕 竟还不是理想的矩形分布。因此,中心处的 强烈的高温过热使奥氏体长大并获得高度的 稳定性,致使硬度有所下降。如果不采用乱 相屏,中心处的过热甚至会气化打出凹坑。

W18Cr4V 经激光硬化后的金相组织如 图 4 所示。在放大 600 倍的表面断层上可以 看到三个区域:表面白亮层为隐晶马氏体,是 一个厚度为 40 μm 左右的熔化区。中间一 层是淬火马氏体的相变区,这一层厚度亦有 40 μm 左右。可见,硬化层还是较深的。第 三层为基体回火马氏体组织。



四、车刀激光硬化后 切削性能试验

由于熔化-冷凝硬化层较深,硬度提高较

|             |          | · ···································· | 1467 | <b>h</b> | 1. 我對國家     |
|-------------|----------|----------------------------------------|------|----------|-------------|
| <br>1 - 21- | 10 11 11 | 1-1-1-1-1<br>1-1-1-1-1                 |      |          | a white and |

大,故 W18Cr4V 高速钢车刀的后刀面的磨 损区采用了熔化-冷凝硬化处理工艺。处理 区的熔包可用油石打平。切削性能试验是在 CA 6140 车床上进行的。工件材料为45号钢, 刀具的几何角度:前角 $\gamma=15^{\circ}$ ,后角 $\alpha=8^{\circ}$ 。 主偏角 $\varphi=75^{\circ}$ ,刃倾角 $\lambda=0^{\circ}$ 。不加冷却液。 车刀后面磨损标准为0.3mm。切削试验结 果见表5。

从表 5 可以看出,在试验的条件下,激光 硬化后的耐用度 T日 为硬化前耐用度 TQ 的 1.25~2.67 倍。由此可见,用激光硬化处理 工艺来提高高速钢车刀的耐用度效果是显著 的,这就给提高复杂的高速钢刀具(如铣刀、 拉刀等)耐用度提出了一种有光明前景的新 的工艺方法。



- [2] Д. М. Гуреев и др.; Кван. электр., 1982, 9, No, 4, 815~817.
- [3] А. А. Углов и др.; Физика и химия обработки материалов, 1984, No. 5, 12~18.

取る $-80 \times 10^{-8}$  (\*31/cm,  $^{\circ}$ C-9、表面筋化 語意 第二章  $-80 \times 10^{-8}$  (\*31/cm,  $^{\circ}$ C-9、表面筋化 =  $-1000^{\circ}$ C, B = 00%,  $m \approx 10^{\circ}$ = -0.001 = 0.7/8,  $m = -0.5 \times 10^{\circ}$ S,  $m = 10^{\circ}$ K = 1.5, cf = 5, 1560 cm,